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Abstract

Structural restraints from residual tensorial couplings in high resolution NMR are usually incorporated into molecu-
lar structure calculation programs by an energy penalty function which depends on the knowledge of the alignment
tensor. Here, we show that the alignment tensor enters in linear form into such a function. Therefore, the explicit
appearance of the alignment tensor can be eliminated from the penalty function. This avoids the necessity of a
determination of magnitude and rhombicity of the alignment tensor in the absence of structural information. The
price for this procedure is a slightly shallower energy landscape. Simulations in the vicinity of the energy minimum
for the backbone of human ubiquitin show that the reduction in curvature is on the order of a few percent.

A new type of structural information has become
available in high resolution NMR by the introduc-
tion of an anisotropic orientation of solute molecules
(Saupe and Englert, 1963; Bothner-By et al., 1981;
Tolman et al., 1995; Vold and Prosser, 1996; Tjandra
and Bax, 1997; Tjandra et al., 1997). This informa-
tion results from the anisotropy of certain second rank
tensor interactions which vanish to first order under
isotropic conditions. A weakly anisotropic distribution
of the molecular orientation reintroduces these inter-
actions to such an extent that they are easily detected
under the conditions of solution NMR applied to bio-
macromolecules. Relevant interactions are the dipolar
couplings between the magnetic nuclei, the anisotropy
of the chemical shift, and the quadrupolar couplings.
The effect of the anisotropic distribution of molecular
orientations is conveniently described by a set of order
parameters which are known as the alignment ten-
sor or the Saupe order matrix (Saupe, 1964; Emsley,
1996). The size of the residual tensorial interactions is
a function of both the alignment tensor and of the ori-
entation of the individual chemical groups with respect
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to the alignment tensor’s principal axes system; hence,
the content of intramolecular structural information.

In order to extract this information from the mea-
sured interaction energies, some knowledge about
the alignment tensor is a prerequisite. This tensor is
characterized by five independent parameters, e.g. its
largest principal value, the rhombicity, and the three
Euler angles describing the orientation of the principal
axes with respect to the molecular coordinates. For
an unknown molecular structure, the largest principal
value and rhombicity of the alignment tensor can be
determined in principle from a histogram of measured
interaction energies under the assumption that the dis-
tribution of individual chemical group orientations is
isotropic (Clore et al., 1998a). An analogous tech-
nique has been described for the determination of the
magnitude and rhombicity of the diffusion tensor from
relaxation data (Clore et al., 1998b). As an extension
to this method, it has also been proposed to refine
the value of the rhombicity of the tensor by a grid
search during the structure calculations (Clore et al.,
1998c). In the absence of any further knowledge on
the molecular structure, the orientation of the tensor
relative to the molecule is unknown. Therefore, in the
energy minimization routines used in molecular struc-
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ture calculations, the Euler angles are usually left as
free floating parameters (Tjandra et al., 1997).

In this communication, we use the fact that the
residual tensorial interactions can be described by a
function which is linear in the five parameters cor-
responding to the irreducible representation of the
alignment tensor. Therefore, the problem of finding an
alignment tensor and a molecular structure that best
fit the experimentally measured tensorial interactions
can be separated into a linear least squares minimiza-
tion for the alignment tensor and a non-linear least
squares minimization for the internal degrees of free-
dom of the molecule. As a consequence, the alignment
tensor can be eliminated completely from the fitting
problem (Golub and Pereyra, 1973). This approach
amounts to implicitly adjusting the linear parameters
for each given set of the non-linear parameters. Such
a minimization is, of course, less sensitive to a vari-
ation in the non-linear parameters than it would be if
the orientation tensor were completely known. How-
ever, the results of simulations using a known protein
structure indicate that the loss in the discriminative
power of the fit is not much reduced compared to the
more complicated approach where experimentally de-
termined values for the largest principal value and the
rhombicity are used.

The notation follows closely the one given by Em-
sley (1996). We consider a molecule which is fixed at
a certain position in space. For the interactions of the
magnetic moments of its nuclei, which are of interest
with respect to residual orientation in high resolution
NMR, the general form of the nuclear HamiltonianH
in irreducible tensorial form can be given as

H =
∑
λ

2∑
m=−2

(−1)mT 2m
λ A2−m

λ gλ (1)

whereT 2m
λ is a second rank, irreducible tensor rep-

resenting the spatial degrees of freedom of theλth
interaction,A2m

λ the nuclear spin operator associated
with it, and gλ a numerical interaction constant. In
the high field case, only diagonal elements of this
Hamiltonian with respect to the Zeeman Hamiltonian
are considered. This means, for a magnetic field in the
direction of the z-axis, only terms ofH with m = 0
are relevant:

H ≈
∑
λ

T 20
λ A20

λ gλ (2)

The translational motion of a molecule in the sam-
ple tube leaves this Hamiltonian invariant if the static

magnetic field is homogeneous. Rotations of the mole-
cule will affect the spatial part (T 2m

λ ) but not the spin
part (A2m

λ ) of the Hamiltonian. For the sake of sim-
plicity, we assume that the molecule does not undergo
significant internal motions. In such a case, the instan-
taneousT 20

λ (t) tensor element can be represented by
an overall rotation of the molecule:

T 20
λ (t) =

2∑
m=−2

T 2m
λ,0D

2
m0(
E�(t)) (3)

whereT 2m
λ,0 representsT 2m

λ in the reference frame of

the laboratory at time pointt = 0, andD2
m0(
E�(t))

a Wigner matrix corresponding to the instantaneous
Euler anglesE�(t) = (α(t), β(t), γ(t)) of the molecule
at time pointt. Observables in high resolution NMR
are associated with the time (and ensemble) average
of H . This average can be expressed as an average of
T 20

λ over all rotations of the molecule:

〈T 20
λ 〉 =

2∑
m=−2

T 2m
λ,0〈D2

m0〉 (4)

The average〈D2
m0〉 is called order parameter. Its

knowledge determines the average ofH and all ob-
servables completely:

〈H 〉 =
2∑

m=−2

〈D2
m0〉

∑
λ

T 2m
λ,0A

20
λ gλ

≡
2∑

m=−2

S∗m
∑
λ

T 2m
λ,0A

20
λ gλ (5)

where the definition〈D2
m0〉 ≡ S∗m has been used.

Note that the complex conjugate in the definition gives
the right side of Equation 5 the form of a canonical
scalar product. The tensor elements for the dipolar,
CSA, and quadrupolar interactions in a form suitable
for Equation 5 are summarized in Table 1. It is clear
from this table that, once a reference frame is chosen
in the laboratory, the elements ofT 2m

λ,0 only depend
on the internal geometry of the molecule, i.e. on its
internal degrees of freedom, e.g. its dihedral angles.
Equation 5 separates these internal degrees of free-
dom from the rotational order of the molecule. As
the Wigner matrices form a complete set of functions
acting on the Euler angles (Brink and Satchler, 1993),
any kind of orientational order can be described com-
pletely by specifying the ensemble averages〈Dl

mm′ 〉
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Table 1. Elements of the irreducible representation of the Hamiltonian for orientation dependent interactions relevant
to high resolution NMR

Interaction T 2m
λ,0 A20 gλ

Dipolar D2
0m(ϕD,ϑD,0) =

√
4π
5 Y2m(ϑD,ϕD) EI1 · EI2− 3I1

z I
2
z

µ0
4π

γ1γ2h̄

r312

CSA
2∑

m′=−2
D2
m′m( E�CSA)ηm

′
CSA Iz

2
3γB01σ

Quadrupolar
2∑

m′=−2
D2
m′m( E�Quad)ηm

′
Quad

EI · EI − 3IzIz
−eQ

4h̄I (2I−1)

(
∂2V
∂Z2

)
The size of the Hamiltonians is measured in angular frequency units.r12 is the internuclear distance associated with the
dipolar interaction between nuclei 1 and 2,1σ = σzz−(σxx+σyy)/2 is the anisotropy of the chemical shielding tensor,
∂2V/∂Z2 is the expectation value of the electric field gradient at the position of the nucleus,eQhas its usual definition
as the nuclear quadrupole moment,ηm = (η/√6,0,1,0, η/

√
6) describes the asymmetry for the CSA or quadrupolar

interaction with the conventionη = (Txx − Tyy)/[Tzz − (Txx + Tyy + Tzz)/3], whereTαα are the principal values
of the interaction tensor. The Wigner rotation matricesD2

m′m( E�) transform the principal axis system of the interaction
tensor into the reference frame of the molecule.

for all l = 0,1,2 . . .; m = −l,−l + 1, . . . , l;
m′ = −l,−l + 1, . . . , l (Emsley, 1996). However,
one realizes from Equation 5 that only the five ele-
ments〈D2

m0(α, β, γ)〉 = (−1)m
√

4π/5〈Y2m(β, γ)〉 ≡
S∗m are relevant for describing ensemble averages of
high resolution NMR. This five-dimensional vectorSm
transforms under rotations as any other second rank
tensor. It corresponds to the irreducible representation
of the Saupe order matrixSαβ = 〈3 cosθα cosθβ −
δαβ〉/2; α, β = x, y, z (Saupe, 1964). The relation
between both representations is given by Clebsch–
Gordan coefficients:

S0 = Szz
S1 = √2/3(Sxz − iSyz)
S2 = √1/6Sxx −√1/6Syy − i√2/3Sxy
Sm = (−1)mS∗−m

(6a)

Szz = S0
Sxx = √3/8(S2 + S−2)− S0/2
Syy = −√3/8(S2+ S−2)− S0/2
Sxy = Syx = i√3/8(S2− S−2)

Sxz = Szx = √3/8(S1− S−1)

Syz = Szy = i√3/8(S1+ S−1)

(6b)

OnceSm is specified, it is thus possible to find
the Saupe order matrixSαβ by Equation 6b and to
derive the principal axis system and eigenvalues of
the orientation tensor by standard procedures of linear
algebra.

Also note the following simple relations between
the values of the order matrix in an arbitrary coordi-
nated system (Sm,Sαβ) and these values in the principal
axis system (S′m,S′αβ):

2∑
m=−2

SmS
∗
m = 2

3

∑
α,β=x,y,z

S2
αβ

= S
′2
zz

(
1+ η2

3

) (7a)

S3
0
4 − 3

2S0(S2S−2 + 1
2S1S−1)+ 3

4

√
3
2(S−2S

2
1

+ S2−1S2)= Det(Sαβ)

= S ′3zz(1− η2)/4

(7b)

where the asymmetry parameterη is usually defined
in the principal axis system as 0≤ η = (S′xx −
S′yy)/S′zz ≤ 1.

In order to reveal the structural information about
the molecule which is contained in Equation 5, reso-
nance frequencies are measured which correspond to
changes in the spin states|1〉 → |2〉 for the interaction
λ. If we denote such a frequency byωλ, it follows
from Equation 5 that

ωλ=
2∑

m=−2

S∗mT 2m
λ,0g

′
λ

≡
2∑

m=−2

S∗mT 2m
λ,0gλ(〈2|A20

λ |2〉 − 〈1|A20
λ |1〉) (8)

It is clear from Table 1 that for the relevant transi-
tions in a spin 1/2 system, both in the case of dipolar
and CSA interactions,g′λ = ±gλ.

Under the assumption of a rigid molecule withn
internal degrees of freedom represented by the vec-
tor Eα = (α1, . . . ,αn), the problem of finding a best
structure of the molecule compatible with a set ofN
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measured frequenciesωobsλ can be stated as finding a

set of parameterŝEα andŜm that minimizes the function

χ2(Eα, ES) ≡ r(Eα, ES)

=
N∑

λ=1

[
ωobsλ −

2∑
m=−2

S∗mT 2m
λ,0(Eα)g′λ

]2 (9)

Whereas Equation 9 presents a non-linear least
squares problem with respect toEα, it is a linear least
squares problem with respect to the order parameter
Sm. For such a class of problems, it is well known
(Golub and Pereyra, 1973) that one can define a modi-
fied non-linear least squares problemr2(Eα)which does
not depend onSm. Thus, it is possible to optimize
r2(Eα) first with respect toEα and then to obtain, a
posteriori, the optimal parametersŜm. In order to fol-
low as closely as possible the notation of Golub and
Pereyra (1973), we introduce the matrix{8(Eα)}λm =
T 2m

λ,0(Eα)g′λ and the vectorEωobs = ωobsλ , r2(Eα) is then
given by:

r2(Eα) = ‖Eωobs−8(Eα)8+(Eα)Eωobs‖2 (10)

where‖ ‖ is the Euclidean norm and8+(Eα) is the
Moore–Penrose generalized inverse of8(Eα). For any

given Eα, the optimal set of order parametersÊS(Eα) =
Ŝm(Eα) is given by the minimal least squares solution

ÊS
∗
(Eα) = 8+(Eα)Eωobs (11)

This optimal set of parameterŝES(Eα) minimizes

r(Eα, ES) at the pointEα and the value ofr(Eα, ÊS(Eα)) is
given byr2(Eα). The problem of minimizing Equation 9
is therefore reduced to minimizing Equation 10 with
respect to the non-linear parametersEα alone. Once an
optimal set of parametersÊα is found, the optimal set of
order parameterŝSm for this choice of̂Eα can be derived
from Equation 11.

The Moore–Penrose generalized inverse8+(Eα)
can be calculated from a singular value decomposition
of 8(Eα) (Campbell and Meyer, 1979). As shown by
Golub and Pereyra (1973), it is, however, not even
necessary to compute8+(Eα) during the minimization
of r2(Eα). It is sufficient to reduce8(Eα) to trapezoidal
form. The value ofr2(Eα) can then be calculated from
the reducing matrix andEωobs directly.

We have tested the validity of this approach for
the fitting of backbone torsion angles from dipolar
coupling data in the structure of human ubiquitin (Fig-
ure 1). All of the following simulations were carried

Figure 1. χ2 deviations of dipolar couplings as a function of
the change in one backbone torsion angle in the ubiquitin crys-
tal structure (Vijay-Kumar et al., 1987) assuming different levels
of knowledge about the orientation tensor. Simulated experimental
dipolar couplings with a random error of 10% were derived from
the crystal structure for a symmetric and an asymmetric orienta-
tion tensor (see text). Single backbone torsion angles, i.e. either
φ of L15 (left column), ψ of T34 (middle column) orφ of T22
(right column), were varied in steps of 3◦ around their crystal
structure values. For each of these configurations, the dipolar cou-
plings were recalculated for the various orientation tensor models
and χ2 was determined as the sum of squared differences be-
tween these and the simulated experimental couplings. Dotted lines
(model 1): complete knowledge of the orientation tensor was as-
sumed. Dashed lines (model 2): knowledge of the largest principal
value and the asymmetry parameter of the orientation tensor was
assumed and Euler angles were derived from a simplex minimiza-
tion. Solid lines (model 3): no knowledge about the orientation
tensor was assumed andχ2 was derived by the pseudo-inverse ap-
proach according to Equation 10. Panel A: the dipolar couplings
for 1HN-15N, 1HNi -

13C′i−1, and1Hα-13Cα were used in the cal-
culation and simulated experimental values were computed using
a symmetric tensor [ES = (0,0, 1,0,0)]. Panel B: zoomed region
of panel A for variations of the backbone torsion angles of+/−50◦.
Panel C: same as panel B, but only1HN-15N dipolar couplings were
taken into account. Panel D: same as panel B, but an asymmetric
orientation tensor [ES = (1/√6, 0,1,0,1/

√
6)] was used.

out using the program MATLAB (The MathWorks,
Natick, MA, U.S.A.). In order to model different
experimental situations, synthetical dipolar couplings
were derived from the coordinates of the crystal struc-
ture of this protein (Vijay-Kumar et al., 1987). These
couplings were calculated for the one- and two-bond
1HN-15N, 1HNi-13C′i−1, and1Hα-13Cα interactions ac-
cording to Equation 8, assuming either an orientation
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tensor symmetric with respect to the z-axis [ES =
(0,0,1,0,0)] or an orientation tensor with largest
principal value in the z-direction and an asymmetry
parameterη of 1 [ES = (1/

√
6,0,1,0,1/

√
6)]. A

value forg′λ of 1 was used for all couplings and nor-
mally distributed random errors of standard variation
0.1 were added to all dipolar couplings.

In a structure calculation/refinement program such
as XPLOR (Brünger, 1992) or DYANA (Günthert
et al., 1997), the information content of the residual
tensorial couplings is usually added in the form of an
energy penalty function (Tjandra et al., 1997) which
is proportional to the sum of the squared deviations
(χ2) between measured and calculated couplings as
given by Equation 9. In order to simulate the situation
occurring near the globalχ2-minimum, a number of
different models were considered. In model 1 it was
assumed that both the orientation and principal val-
ues of the orientation tensor were known completely.
This amounts to the specification of all five compo-
nents of theES vector. In model 2, it was assumed that
only theS′zz value in the principal axis system and the
asymmetry parameterη were known. Such a situation
can be realized for an unknown structure by deriving
these values under the assumption that the tensorial
couplings follow an isotropic distribution (Clore et al.,
1998a). In this case, the Euler angles describing the
orientation of the Saupe orientation matrix are fitted
implicitly by the energy minimization routine of the
molecular dynamics program. In model 2, this situa-
tion was simulated by a simplex minimization of the
energy with respect to three Euler angles (α,β,γ) in the
case of an asymmetric orientation tensor or two Euler
angles (β,γ) in the case of a symmetric tensor. Finally,
model 3 assumes no prior knowledge of the orientation
tensor at all and uses the pseudo-inverse as described
above to calculate the energy penalty function accord-
ing to Equation 10. This implicitly fits orientation
and principal values of the orientation tensor for each
given configuration of the molecule.

For these models and the two assumed orientation
tensors, one-dimensional cross sections through the
χ2 hypersurface were calculated as functions of three
different backbone torsion angles in ubiquitin:φ(L15),
ψ(E34), andφ(T22). The direction of the bond vectors
for these torsion angles, i.e. N-Cα for φ and Cα-C′ for
ψ, deviates by 89◦ (L15), 41◦ (E34), and 7◦ (T22)
from the direction of the crystal coordinate z-axis. The
torsion angle for each of these bonds was varied in
steps of 3◦ in an interval of±180◦ around the torsion
angle given by the crystal structure. All other torsion

angles were kept unchanged from the crystal structure.
χ2 values were determined either for the1HN-15N
dipolar couplings alone or for the sum of the1HN-15N,
1HNi-13C′i−1, and1Hα-13Cα dipolar couplings for all
the residues of ubiquitin.

Figure 1 shows examples of these simulations. As
expected, all one-dimensional cross sections through
theχ2 hypersurface show a distinct minimum for tor-
sion angles which are close to the crystal structure
values (1φ, 1ψ ≈ 0◦) Note, however, that even in
the case of complete knowledge of the orientation ten-
sor (Figure 1, dotted lines), the minimum positions
sometimes deviate to some extent from the crystal
structure because of the random errors incorporated
into the synthetic data. The cross sections through the
χ2 surface are clearly influenced by the symmetry of
the torsion bond vectors relative to the orientation ten-
sor. For example, in the case of theφ-angle of residue
L15, a second minimum appears in theχ2 surface for
1φ = 180◦ because the N-Cα bond vector of L15 is
approximately perpendicular to the z-axis of the ori-
entation tensor and a rotation by 180◦ around this axis
leaves the calculated dipolar couplings approximately
invariant. No such second minimum is observed when
the torsion bond vector is not perpendicular to the
z-axis [ψ(E34) andφ(T22), Figure 1]. On the other
hand, a much shallower minimum is observed for the
variation ofφ(T22) in the case of the axially symmet-
ric orientation tensor (Figure 1, panel A), since the
N-Cα bond vector of T22 is approximately parallel to
the symmetry axis of the orientation tensor.

Clearly, the variations inχ2 and therefore the dis-
criminative power of the energy minimization are less
pronounced for incomplete knowledge of the orien-
tation tensor [Figure 1: model 2 (dashed line) and
model 3 (solid line)] than for a complete knowledge
of the orientation tensor [Figure 1: model 1 (solid
line)]. However, the differences between the assump-
tion of knowledge of only amplitude and rhombicity
(model 2, dashed lines) and no prior knowledge of the
orientation tensor (model 3, solid lines) are not very
pronounced. In the vicinity of the global minimum,
both χ2 surfaces are almost identical. A quantitative
comparison was carried out between the three models
by using 15 different simulations of dipolar coupling
constants for the backbone of ubiquitin with the in-
corporation of 10% random errors. This comparison
shows that the root mean square difference between
the χ2 minimum positions of model 2 and 3 for the
three torsion angles is 4.7◦ (1.3◦) for the symmetric
orientation tensor and 1.3◦ (0.2◦) for the asymmetric
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orientation tensor in the case of1HN-15N (1HN-15N,
1HNi-13C′i−1, and 1Hα-13Cα) couplings. These devi-
ations between model 2 and 3 are smaller than the
variations of the minimum positions of model 1 which
are due to the presence of the 10% random error in the
coupling constants.

Since the discriminative power ofχ2 depends on
its steepness, a more meaningful comparison between
the models is given by the variations in theχ2 sur-
face. Confidence intervals for parameters fitted from
a χ2 minimization for normally distributed errors can
be defined as the region around theχ2 minimum for
which χ2 does not change by more than a certain
amount1χ2 (Press et al., 1988). Therefore, in a suit-
ably small region, the curvature at theχ2 minimum
provides an estimate for the precision by which a pa-
rameter will be defined by means of theχ2 fit. It is
obvious from Figure 1 that the curvature at the min-
imum position decreases continuously from model 1
to model 3 as the number of known parameters is
decreased in the assumptions about the orientation ten-
sor. Clearly, the largest reduction in curvature occurs
between model 1 and 2. When the curvature is calcu-
lated from a parabolic fit in a region of+/−15◦ around
the X-ray torsion angles, the average reduction in cur-
vature between model 1 and 2 ranges between 40 and
70%, depending on the torsion angle, the choice of
the orientation tensor and the set of dipolar couplings
(1HN-15N or 1HN-15N, 1HNi-13C′i−1, and1Hα-13Cα).
The differences in curvature between model 2 and 3
are, however, much smaller: for the 15 simulations
and the average over the three torsion angles con-
sidered, the reduction in curvature between model 2
and model 3 amounts to 6% (6%) for the symmetric
orientation tensor and 8% (2%) for the asymmetric
orientation tensor in the case of1HN-15N (1HN-15N,
1HNi-13C′i−1, and1Hα-13Cα) couplings. It is therefore
expected that the discriminative power of the energy
penalty function given by Equation 10 is not much
reduced in the vicinity of the global minimum com-
pared to the method where magnitude and rhombicity
are used as known parameters. Because of the high di-
mensionality of theχ2 surface, it is difficult to extend
this local observation to the global parameter space.
It is, however, obvious from Figure 1A that even for
the full range of one torsion angle, the reduction in
the steepness of the energy function between model 2
and 3 is not very pronounced for two of the three cases
considered [φ(L15) andφ(T22)].

In summary, we have shown that an energy penalty
function for structural calculations using residual ten-

sorial couplings can be defined without an explicit
knowledge of the orientation tensor. The application
of this type of penalty function should be beneficial in
cases where the amplitude and rhombicity of the ten-
sor cannot be determined accurately enough by other
means. An obvious extension in the application of
the method is the structural refinement with respect
to relaxation data resulting from anisotropic diffusion
which can be cast into a similar mathematical form
(Brüschweiler et al., 1995; Lee et al., 1997).
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